Page 1

Displaying 1 – 5 of 5

Showing per page

Factoring polynomials over global fields

Karim Belabas, Mark van Hoeij, Jürgen Klüners, Allan Steel (2009)

Journal de Théorie des Nombres de Bordeaux

We prove that van Hoeij’s original algorithm to factor univariate polynomials over the rationals runs in polynomial time, as well as natural variants. In particular, our approach also yields polynomial time complexity results for bivariate polynomials over a finite field.

Fast computation of class fields given their norm group

Loïc Grenié (2008)

Journal de Théorie des Nombres de Bordeaux

Let K be a number field containing, for some prime , the -th roots of unity. Let L be a Kummer extension of degree of K characterized by its modulus 𝔪 and its norm group. Let K 𝔪 be the compositum of degree extensions of K of conductor dividing 𝔪 . Using the vector-space structure of Gal ( K 𝔪 / K ) , we suggest a modification of the rnfkummer function of PARI/GP which brings the complexity of the computation of an equation of L over K from exponential to linear.

Fundamental units in a family of cubic fields

Veikko Ennola (2004)

Journal de Théorie des Nombres de Bordeaux

Let 𝒪 be the maximal order of the cubic field generated by a zero ε of x 3 + ( - 1 ) x 2 - x - 1 for , 3 . We prove that ε , ε - 1 is a fundamental pair of units for 𝒪 , if [ 𝒪 : [ ε ] ] / 3 .

Currently displaying 1 – 5 of 5

Page 1