Page 1

Displaying 1 – 11 of 11

Showing per page

On the diophantine equation x 2 + 2 a 3 b 73 c = y n

Murat Alan, Mustafa Aydin (2023)

Archivum Mathematicum

In this paper, we find all integer solutions ( x , y , n , a , b , c ) of the equation in the title for non-negative integers a , b and c under the condition that the integers x and y are relatively prime and n 3 . The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves.

On the Diophantine equation x 2 + 2 α 5 β 17 γ = y n

Hemar Godinho, Diego Marques, Alain Togbé (2012)

Communications in Mathematics

In this paper, we find all solutions of the Diophantine equation x 2 + 2 α 5 β 17 γ = y n in positive integers x , y 1 , α , β , γ , n 3 with gcd ( x , y ) = 1 .

On the Lebesgue-Nagell equation

Andrzej Dąbrowski (2011)

Colloquium Mathematicae

We completely solve the Diophantine equations x ² + 2 a q b = y (for q = 17, 29, 41). We also determine all C = p a p k a k and C = 2 a p a p k a k , where p , . . . , p k are fixed primes satisfying certain conditions. The corresponding Diophantine equations x² + C = yⁿ may be studied by the method used by Abu Muriefah et al. (2008) and Luca and Togbé (2009).

Currently displaying 1 – 11 of 11

Page 1