Quadratic subfields of quartic extensions of local fields.
Repka, Joe (1988)
International Journal of Mathematics and Mathematical Sciences
Wilfried Meißner (1982)
Mathematische Zeitschrift
Shen, Chun-Yen (2008)
The Electronic Journal of Combinatorics [electronic only]
Vichian Laohakosol, Suphawan Janphaisaeng (2010)
Czechoslovak Mathematical Journal
A quasi-permutation polynomial is a polynomial which is a bijection from one subset of a finite field onto another with the same number of elements. This is a natural generalization of the familiar permutation polynomials. Basic properties of quasi-permutation polynomials are derived. General criteria for a quasi-permutation polynomial extending the well-known Hermite's criterion for permutation polynomials as well as a number of other criteria depending on the permuted domain and range are established....
B. Kahn (1990)
Journal de théorie des nombres de Bordeaux
Lior Bary-Soroker, Arno Fehm (2013)
Journal de Théorie des Nombres de Bordeaux
Let be a Galois extension of a countable Hilbertian field . Although need not be Hilbertian, we prove that an abundance of large Galois subextensions of are.
Dominique Duval (1989)
Compositio Mathematica
Andrzej Schinzel (2006)
Acta Mathematica Universitatis Ostraviensis
Irreducibility over of a special symmetric form in a variables is proved for .
Andrzej Schinzel (1970)
Acta Arithmetica
Andrzej Schinzel (1989)
Acta Arithmetica
A. Schinzel (1991)
Acta Arithmetica
A. Schinzel (1999)
Acta Arithmetica
M. Fried, Andrzej Schinzel (1972)
Acta Arithmetica
A. Schinzel (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
A necessary and sufficient condition is given for reducibility of a symmetric polynomial whose number of variables is large in comparison to degree.
Pierre Dèbes (2016)
Acta Arithmetica
We show explicit forms of the Bertini-Noether reduction theorem and of the Hilbert irreducibility theorem. Our approach recasts in a polynomial context the geometric Grothendieck good reduction criterion and the congruence approach to HIT for covers of the line. A notion of “bad primes” of a polynomial P ∈ ℚ[T,Y] irreducible over ℚ̅ is introduced, which plays a central and unifying role. For such a polynomial P, we deduce a new bound for the least integer t₀ ≥ 0 such that P(t₀,Y) is irreducible...
Peter Roquette (1976)
Journal für die reine und angewandte Mathematik
Paulo Ribenboim (1984)
Rendiconti del Seminario Matematico della Università di Padova
Wolfgang Vogel, Dilip P. Patil (1983)
Monatshefte für Mathematik
Ernst-Wilhelm Zink (1992)
Journal für die reine und angewandte Mathematik
Henri COHEN (1971/1972)
Seminaire de Théorie des Nombres de Bordeaux