Displaying 121 – 140 of 374

Showing per page

Lower bounds on the class number of algebraic function fields defined over any finite field

Stéphane Ballet, Robert Rolland (2012)

Journal de Théorie des Nombres de Bordeaux

We give lower bounds on the number of effective divisors of degree g - 1 with respect to the number of places of certain degrees of an algebraic function field of genus g defined over a finite field. We deduce lower bounds for the class number which improve the Lachaud - Martin-Deschamps bounds and asymptotically reaches the Tsfasman-Vladut bounds. We give examples of towers of algebraic function fields having a large class number.

Mosco convergence of sequences of homogeneous polynomials.

J. Ferrera (1998)

Revista Matemática Complutense

In this paper we give a characterization of uniform convergence on weakly compact sets, for sequences of homogeneous polynomials in terms of the Mosco convergence of their level sets. The result is partially extended for holomorphic functions. Finally we study the relationship with other convergences.

Currently displaying 121 – 140 of 374