Page 1

Displaying 1 – 7 of 7

Showing per page

A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field.

Laureano González-Vega, Henri Lombardi (1992)

Extracta Mathematicae

Let K be an ordered field and R its real closure. A semipolynomial will be defined as a function from Rn to R obtained by composition of polynomial functions and the absolute value. Every semipolynomial can be defined as a straight-line program containing only instructions with the following type: polynomial, absolute value, sup and inf and such a program will be called a semipolynomial expression. It will be proved, using the ordinary real positivstellensatz, a general real positivstellensatz concerning...

Currently displaying 1 – 7 of 7

Page 1