On a Class of Preorderrings of Higher Level.
Page 1 Next
Serban A. Basarab (1982)
Manuscripta mathematica
Tobias Kaiser (2005)
Annales Polonici Mathematici
We define a notion of volume for sets definable in an o-minimal structure on an archimedean real closed field. We show that given a parametric family of continuous functions on the positive cone of an archimedean real closed field definable in an o-minimal structure, the set of parameters where the integral of the function converges is definable in the same structure.
Bernhard Heinemann (1985)
Manuscripta mathematica
Tibor Šalát (1994)
Mathematica Slovaca
Zeng Guangxin (1991)
Mathematische Zeitschrift
Martin Krüskemper (1990)
Mathematische Zeitschrift
Eberhard Becker, Danielle Gondard (1989)
Manuscripta mathematica
Werner Bäni, Herbert Gross (1978)
Mathematische Zeitschrift
H. KEMPFERT (1968)
Numerische Mathematik
Alexander Prestel, Richard Elman, Tsit-Yuen Lam (1973)
Mathematische Zeitschrift
Elkedagmar Heinrich (1981/1982)
Groupe de travail d'analyse ultramétrique
Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann (2014)
Open Mathematics
We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.
Manfred Knebusch (1973)
Commentarii mathematici Helvetici
Ludwig Bröcker (1988)
Manuscripta mathematica
Pestov, G.G. (2001)
Sibirskij Matematicheskij Zhurnal
Francis RAYNER (1975/1976)
Seminaire de Théorie des Nombres de Bordeaux
T.M. Viswanathan (1977)
Journal für die reine und angewandte Mathematik
R. Berr, Françoise Delon, J. Schmid (1999)
Fundamenta Mathematicae
We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.
Christoph Schwarzweller (2017)
Formalized Mathematics
We introduce ordered rings and fields following Artin-Schreier’s approach using positive cones. We show that such orderings coincide with total order relations and give examples of ordered (and non ordered) rings and fields. In particular we show that polynomial rings can be ordered in (at least) two different ways [8, 5, 4, 9]. This is the continuation of the development of algebraic hierarchy in Mizar [2, 3].
Gábor Révész (1983)
Manuscripta mathematica
Page 1 Next