Separating families for semi-algebraic sets.
Page 1
Murray A. Marshall (1993)
Manuscripta mathematica
Gritzmann, Peter, Klee, Victor (1998)
Journal of Convex Analysis
Jean ESTERLE (1975/1976)
Seminaire de Théorie des Nombres de Bordeaux
Daniel Shapiro, Raj Markanda, Ezra Brown (1986)
Acta Arithmetica
Robert E. Jamison (1977)
Compositio Mathematica
Ali Akbar Estaji, Ahmad Mahmoudi Darghadam (2023)
Archivum Mathematicum
Let () be the -ring of all (bounded) real-measurable functions on a -measurable space , let be the family of all such that is compact, and let be all that is compact for any . We introduce realcompact subrings of , we show that is a realcompact subring of , and also is a realcompact if and only if is a compact measurable space. For every nonzero real Riesz map , we prove that there is an element such that for every if is a compact measurable space. We confirm...
Masayoshi Nagata (1974/1975)
Séminaire Dubreil. Algèbre et théorie des nombres
Claus Scheiderer (1991)
Manuscripta mathematica
Robert H. Redfield (2001)
Czechoslovak Mathematical Journal
Paul F. Conrad, Michael R. Darnel (2001)
Czechoslovak Mathematical Journal
In this article, it will be shown that every -subgroup of a Specker -group has singular elements and that the class of -groups that are -subgroups of Specker -group form a torsion class. Methods of adjoining units and bases to Specker -groups are then studied with respect to the generalized Boolean algebra of singular elements, as is the strongly projectable hull of a Specker -group.
Roberto Moresco (1977)
Rendiconti del Seminario Matematico della Università di Padova
Eberhard Becker (1979)
Journal für die reine und angewandte Mathematik
Ralph Berr (1992)
Mathematische Zeitschrift
Bruno Deschamps (2011)
Journal de Théorie des Nombres de Bordeaux
Dans cet article, nous tentons de généraliser à d’autres situations l’isomorphisme de groupes topologiques qui existe entre le groupe et le groupe unitaire .Nous montrons que cet isomorphisme existe algébriquement en toute généralité : pour tout corps algébriquement clos et toute involution de les groupes et sont isomorphes. Nous donnons ensuite un exemple d’involution de qui n’est pas conjuguée, dans le groupe , à la conjugaison complexe et telle que soit topologiquement isomorphe...
Galanova, N. (2004)
Serdica Mathematical Journal
2000 Mathematics Subject Classification: 03E04, 12J15, 12J25.We consider a construction of fields with symmetric gaps that are not semi-η1. By this construction we give examples of fields with different asymmetric gaps.
Page 1