Displaying 21 – 40 of 54

Showing per page

On the closed subfields of [...] Q ¯   p Q ¯ ˜ p

Sever Achimescu, Victor Alexandru, Corneliu Stelian Andronescu (2016)

Open Mathematics

Let p be a prime number, and let [...] Q¯ p Q ¯ ˜ 𝐩 be the completion of Q with respect to the pseudovaluation w which extends the p-adic valuation vp. In this paper our goal is to give a characterization of closed subfields of [...] Q¯ p Q ¯ ˜ 𝐩 , the completion of Q with respect w, i.e. the spectral extension of the p-adic valuation vp on Q.

On the dimension of the space of ℝ-places of certain rational function fields

Taras Banakh, Yaroslav Kholyavka, Oles Potyatynyk, Michał Machura, Katarzyna Kuhlmann (2014)

Open Mathematics

We prove that for every n ∈ ℕ the space M(K(x 1, …, x n) of ℝ-places of the field K(x 1, …, x n) of rational functions of n variables with coefficients in a totally Archimedean field K has the topological covering dimension dimM(K(x 1, …, x n)) ≤ n. For n = 2 the space M(K(x 1, x 2)) has covering and integral dimensions dimM(K(x 1, x 2)) = dimℤ M(K(x 1, x 2)) = 2 and the cohomological dimension dimG M(K(x 1, x 2)) = 1 for any Abelian 2-divisible coefficient group G.

On the irreducible factors of a polynomial over a valued field

Anuj Jakhar (2024)

Czechoslovak Mathematical Journal

We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

On valuations of nearfields

Dalibor Klucký, Libuše Marková (1983)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Currently displaying 21 – 40 of 54