Autour des idéaux premiers de Goldman d'un anneau commutatif
Let be a commutative ring with identity and an ideal of . is said to be - if for every element there is an idempotent such that is a unit and belongs to . A filter of ideals, say , of is Noetherian if for each there is a finitely generated ideal such that . We characterize -clean rings for the ideals , , , and , in terms of the frame of multiplicative Noetherian filters of ideals of , as well as in terms of more classical ring properties.
Recently, motivated by Anderson, Dumitrescu’s -finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of -coherent rings, which is the -version of coherent rings. Let be a commutative ring with unity graded by an arbitrary commutative monoid , and a multiplicatively closed subset of nonzero homogeneous elements of . We define to be graded--coherent ring if every finitely generated homogeneous ideal of is -finitely presented. The purpose of this paper is to give the graded...
All rings considered in this paper are assumed to be commutative with identities. A ring is a -ring if every ideal of is a finite product of primary ideals. An almost -ring is a ring whose localization at every prime ideal is a -ring. In this paper, we first prove that the statements, is an almost -ring and is an almost -ring are equivalent for any ring . Then we prove that under the condition that every prime ideal of is an extension of a prime ideal of , the ring is a (an almost)...
A ternary ring is an algebraic structure of type satisfying the identities and where, moreover, for any , , there exists a unique with . A congruence on is called normal if is a ternary ring again. We describe basic properties of the lattice of all normal congruences on and establish connections between ideals (introduced earlier by the third author) and congruence kernels.