Displaying 61 – 80 of 87

Showing per page

Pseudo-valuation rings. II

David F. Anderson, Ayman Badawi, David E. Dobbs (2000)

Bollettino dell'Unione Matematica Italiana

Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se R , M è un PVR, allora ogni sopra-anello di R è un PVR se (e soltanto se) R u è quasi-locale per ciascun elemento u di M : M . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario R , avente Z R come insieme di zero-divisori. Per esempio, se P è un primo «forte» di R e contiene un elemento non-zero divisore di R , allora P : P è un sopra-anello...

Separating ideals in dimension 2.

James J. Madden, Niels Schwartz (1997)

Revista Matemática de la Universidad Complutense de Madrid

Experience shows that in geometric situations the separating ideal associated with two orderings of a ring measures the degree of tangency of the corresponding ultrafilters of semialgebraic sets. A related notion of separating ideals is introduced for pairs of valuations of a ring. The comparison of both types of separating ideals helps to understand how a point on a surface is approached by different half-branches of curves.

Some notes on the composite G -valuations

Angeliki Kontolatou (1994)

Archivum Mathematicum

In analogy with the notion of the composite semi-valuations, we define the composite G -valuation v from two other G -valuations w and u . We consider a lexicographically exact sequence ( a , β ) : A u B v C w and the composite G -valuation v of a field K with value group B v . If the assigned to v set R v = { x K / v ( x ) 0 or v ( x ) non comparable to 0 } is a local ring, then a G -valuation w of K into C w is defined with its assigned set R w a local ring, as well as another G -valuation u of a residue field is defined with G -value group A u .

Some remarks on the altitude inequality

Noômen Jarboui (1999)

Colloquium Mathematicae

We introduce and study a new class of ring extensions based on a new formula involving the heights of their primes. We compare them with the classical altitude inequality and altitude formula, and we give another characterization of locally Jaffard domains, and domains satisfying absolutely the altitude inequality (resp., the altitude formula). Then we study the extensions R ⊆ S where R satisfies the corresponding condition with respect to S (Definition 3.1). This leads to a new characterization...

Currently displaying 61 – 80 of 87