On the divisibility properties of families of filtered F-crystals.
Let be a projective Frobenius split variety with a fixed Frobenius splitting . In this paper we give a sharp uniform bound on the number of subvarieties of which are compatibly Frobenius split with . Similarly, we give a bound on the number of prime -ideals of an -finite -pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.
Let be a proper ideal of a commutative Noetherian ring R of prime characteristic p and let Q() be the smallest positive integer m such that , where is the Frobenius closure of . This paper is concerned with the question whether the set is bounded. We give an affirmative answer in the case that the ideal is generated by an u.s.d-sequence c₁,..., cₙ for R such that (i) the map induced by multiplication by c₁...cₙ is an R-monomorphism; (ii) for all , c₁/1,..., cₙ/1 is a -filter regular sequence...