Rings all of whose additive endomorphisms are left multiplications.
Let be a commutative ring with identity. A proper ideal is said to be an -ideal of if for , and imply . We give a new generalization of the concept of -ideals by defining a proper ideal of to be a semi -ideal if whenever is such that , then or . We give some examples of semi -ideal and investigate semi -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new class of...
Let be a commutative ring. The annihilator graph of , denoted by , is the undirected graph with all nonzero zero-divisors of as vertex set, and two distinct vertices and are adjacent if and only if , where for , . In this paper, we characterize all finite commutative rings with planar or outerplanar or ring-graph annihilator graphs. We characterize all finite commutative rings whose annihilator graphs have clique number , or . Also, we investigate some properties of the annihilator...
If is a commutative ring with identity and is defined by letting mean or , then is a partially ordered ring. Necessary and sufficient conditions on are given for to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings of integers mod for . In particular, if is reduced, then is a lattice iff is a weak Baer ring, and is a distributive lattice iff is a Boolean ring, , , or a four element field.
It is well known that to every Boolean ring can be assigned a Boolean algebra whose operations are term operations of . Then a symmetric difference of together with the meet operation recover the original ring operations of . The aim of this paper is to show for what a ring a similar construction is possible. Of course, we do not construct a Boolean algebra but only so-called lattice-like structure which was introduced and treated by the authors in a previous paper. In particular, we reached...
In this article, we prove that in content extentions minimal primes extend to minimal primes and discuss zero-divisors of a content algebra over a ring who has Property (A) or whose set of zero-divisors is a finite union of prime ideals. We also examine the preservation of diameter of zero-divisor graph under content extensions.