Page 1 Next

Displaying 1 – 20 of 21

Showing per page

Ideal class (semi)groups and atomicity in Prüfer domains

Richard Erwin Hasenauer (2021)

Czechoslovak Mathematical Journal

We explore the connection between atomicity in Prüfer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prüfer domains of finite character to be atomic. We construct a non-Noetherian almost Dedekind domain and exhibit a generating set for the ideal class semigroup.

Ideal-theoretic characterizations of valuation and Prüfer monoids

Franz Halter-Koch (2004)

Archivum Mathematicum

It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen r -system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.

Integral closures of ideals in the Rees ring

Y. Tiraş (1993)

Colloquium Mathematicae

The important ideas of reduction and integral closure of an ideal in a commutative Noetherian ring A (with identity) were introduced by Northcott and Rees [4]; a brief and direct approach to their theory is given in [6, (1.1)]. We begin by briefly summarizing some of the main aspects.

Intermediate domains between a domain and some intersection of its localizations

Mabrouk Ben Nasr, Noômen Jarboui (2002)

Bollettino dell'Unione Matematica Italiana

In this paper, we deal with the study of intermediate domains between a domain R and a domain T such that T is an intersection of localizations of R , namely the pair R , T . More precisely, we study the pair R , R d and the pair R , R ~ , where R d = R M M Max R , h t M = dim R and R ~ = R M M Max R , h t M 2 . We prove that, if R is a Jaffard domain, then R , R d n is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if R is an S -domain, then R , R ~ is a residually algebraic pair (that is for each intermediate domain S between R and R ~ , if Q is a prime ideal of S ...

Intersections of essential minimal prime ideals

A. Taherifar (2014)

Commentationes Mathematicae Universitatis Carolinae

Let 𝒵 ( ) be the set of zero divisor elements of a commutative ring R with identity and be the space of minimal prime ideals of R with Zariski topology. An ideal I of R is called strongly dense ideal or briefly s d -ideal if I 𝒵 ( ) and I is contained in no minimal prime ideal. We denote by R K ( ) , the set of all a R for which D ( a ) ¯ = V ( a ) ¯ is compact. We show that R has property ( A ) and is compact if and only if R has no s d -ideal. It is proved that R K ( ) is an essential ideal (resp., s d -ideal) if and only if is an almost locally compact...

Invariant theory and the 𝒲 1 + algebra with negative integral central charge

Andrew Linshaw (2011)

Journal of the European Mathematical Society

The vertex algebra 𝒲 1 + , c with central charge c may be defined as a module over the universal central extension of the Lie algebra of differential operators on the circle. For an integer n 1 , it was conjectured in the physics literature that 𝒲 1 + , - n should have a minimal strong generating set consisting of n 2 + 2 n elements. Using a free field realization of 𝒲 1 + , - n due to Kac–Radul, together with a deformed version of Weyl’s first and second fundamental theorems of invariant theory for the standard representation of GL n ,...

Invariants for the modular cyclic group of prime order via classical invariant theory

David L. Wehlau (2013)

Journal of the European Mathematical Society

Let 𝔽 be any field of characteristic p . It is well-known that there are exactly p inequivalent indecomposable representations V 1 , V 2 , ... , V p of C p defined over 𝔽 . Thus if V is any finite dimensional C p -representation there are non-negative integers 0 n 1 , n 2 , ... , n k p - 1 such that V i = 1 k V n i + 1 . It is also well-known there is a unique (up to equivalence) d + 1 dimensional irreducible complex representation of S L 2 ( ) given by its action on the space R d of d forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring...

Invariants of finite groups generated by generalized transvections in the modular case

Xiang Han, Jizhu Nan, Chander K. Gupta (2017)

Czechoslovak Mathematical Journal

We investigate the invariant rings of two classes of finite groups G GL ( n , F q ) which are generated by a number of generalized transvections with an invariant subspace H over a finite field F q in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with...

Irreducibility of ideals in a one-dimensional analytically irreducible ring

Valentina Barucci, Faten Khouja (2010)

Actes des rencontres du CIRM

Let R be a one-dimensional analytically irreducible ring and let I be an integral ideal of R . We study the relation between the irreducibility of the ideal I in R and the irreducibility of the corresponding semigroup ideal v ( I ) . It turns out that if v ( I ) is irreducible, then I is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition...

Currently displaying 1 – 20 of 21

Page 1 Next