The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We explore the connection between atomicity in Prüfer domains and their corresponding class groups. We observe that a class group of infinite order is necessary for non-Noetherian almost Dedekind and Prüfer domains of finite character to be atomic. We construct a non-Noetherian almost Dedekind domain and exhibit a generating set for the ideal class semigroup.
It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen -system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.
The important ideas of reduction and integral closure of an ideal in a commutative Noetherian ring A (with identity) were introduced by Northcott and Rees [4]; a brief and direct approach to their theory is given in [6, (1.1)]. We begin by briefly summarizing some of the main aspects.
In this paper, we deal with the study of intermediate domains between a domain and a domain such that is an intersection of localizations of , namely the pair . More precisely, we study the pair and the pair , where and . We prove that, if is a Jaffard domain, then is a Jaffard pair, which generalize [5, Théorème 1.9]. We also show that if is an -domain, then is a residually algebraic pair (that is for each intermediate domain between and , if is a prime ideal of ...
Let be the set of
zero divisor elements of a commutative
ring with identity and
be the space of minimal prime ideals
of with Zariski topology. An ideal
of is called strongly dense
ideal or briefly -ideal
if and
is contained in no minimal prime ideal.
We denote by , the
set of all for which
is compact. We show that has
property and is
compact if and only if has no
-ideal. It is proved that
is an essential
ideal (resp., -ideal) if and only
if is an almost locally
compact...
The vertex algebra with central charge may be defined as a module over the universal central extension of the Lie algebra of differential operators on the circle. For an integer , it was conjectured in the physics literature that should have a minimal strong generating set consisting of elements. Using a free field realization of due to Kac–Radul, together with a deformed version of Weyl’s first and second fundamental theorems of
invariant theory for the standard representation of ,...
Let be any field of characteristic . It is well-known that there are exactly inequivalent indecomposable representations of defined over . Thus if is any finite dimensional -representation there are non-negative integers such that . It is also well-known there is a unique (up to equivalence) dimensional irreducible complex representation of given by its action on the space of forms. Here we prove a conjecture, made by R. J. Shank, which reduces the computation of the ring...
We investigate the invariant rings of two classes of finite groups which are generated by a number of generalized transvections with an invariant subspace over a finite field in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with...
Let be a one-dimensional analytically irreducible ring and let be an integral ideal of . We study the relation between the irreducibility of the ideal in and the irreducibility of the corresponding semigroup ideal . It turns out that if is irreducible, then is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition...
Currently displaying 1 –
20 of
21