Page 1 Next

Displaying 1 – 20 of 111

Showing per page

On a -Kasch spaces

Ali Akbar Estaji, Melvin Henriksen (2010)

Archivum Mathematicum

If X is a Tychonoff space, C ( X ) its ring of real-valued continuous functions. In this paper, we study non-essential ideals in C ( X ) . Let a be a infinite cardinal, then X is called a -Kasch (resp. a ¯ -Kasch) space if given any ideal (resp. z -ideal) I with gen ( I ) < a then I is a non-essential ideal. We show that X is an 0 -Kasch space if and only if X is an almost P -space and X is an 1 -Kasch space if and only if X is a pseudocompact and almost P -space. Let C F ( X ) denote the socle of C ( X ) . For a topological space X with only...

On almost discrete space

Ali Akbar Estaji (2008)

Archivum Mathematicum

Let C ( X ) be the ring of real continuous functions on a completely regular Hausdorff space. In this paper an almost discrete space is determined by the algebraic structure of C ( X ) . The intersection of essential weak ideal in C ( X ) is also studied.

On associated and attached prime ideals of certain modules

K. Divaani-Aazar (2001)

Colloquium Mathematicae

Primary and secondary functors have been introduced in [2] and applied to extend some results concerning asymptotic prime ideals. In this paper, the theory of primary and secondary functors is developed and examples of non-exact primary and non-exact secondary functors are presented. Also, as an application, the sets of associated and of attached prime ideals of certain modules are determined.

On commutative rings whose prime ideals are direct sums of cyclics

M. Behboodi, A. Moradzadeh-Dehkordi (2012)

Archivum Mathematicum

In this paper we study commutative rings R whose prime ideals are direct sums of cyclic modules. In the case R is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring ( R , ) , the following statements are equivalent: (1) Every prime ideal of R is a direct sum of cyclic R -modules; (2) = λ Λ R w λ where Λ is an index set and R / Ann ( w λ ) is a principal ideal ring for each λ Λ ; (3) Every prime ideal of R is a direct sum of at most...

On deformation method in invariant theory

Dmitri Panyushev (1997)

Annales de l'institut Fourier

In this paper we relate the deformation method in invariant theory to spherical subgroups. Let G be a reductive group, Z an affine G -variety and H G a spherical subgroup. We show that whenever G / H is affine and its semigroup of weights is saturated, the algebra of H -invariant regular functions on Z has a G -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of G . The deformation method in its usual form, as developed...

On domains with ACC on invertible ideals

Stefania Gabelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

On f -rings that are not formally real

James J. Madden (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Henriksen and Isbell showed in 1962 that some commutative rings admit total orderings that violate equational laws (in the language of lattice-ordered rings) that are satisfied by all totally-ordered fields. In this paper, we review the work of Henriksen and Isbell on this topic, construct and classify some examples that illustrate this phenomenon using the valuation theory of Hion (in the process, answering a question posed in [E]) and, finally, prove that a base for the equational theory of totally-ordered...

Currently displaying 1 – 20 of 111

Page 1 Next