On a functional equation arising from hyperbolic geometry.
If is a Tychonoff space, its ring of real-valued continuous functions. In this paper, we study non-essential ideals in . Let be a infinite cardinal, then is called -Kasch (resp. -Kasch) space if given any ideal (resp. -ideal) with then is a non-essential ideal. We show that is an -Kasch space if and only if is an almost -space and is an -Kasch space if and only if is a pseudocompact and almost -space. Let denote the socle of . For a topological space with only...
Let be the ring of real continuous functions on a completely regular Hausdorff space. In this paper an almost discrete space is determined by the algebraic structure of . The intersection of essential weak ideal in is also studied.
Primary and secondary functors have been introduced in [2] and applied to extend some results concerning asymptotic prime ideals. In this paper, the theory of primary and secondary functors is developed and examples of non-exact primary and non-exact secondary functors are presented. Also, as an application, the sets of associated and of attached prime ideals of certain modules are determined.
In this paper we study commutative rings whose prime ideals are direct sums of cyclic modules. In the case is a finite direct product of commutative local rings, the structure of such rings is completely described. In particular, it is shown that for a local ring , the following statements are equivalent: (1) Every prime ideal of is a direct sum of cyclic -modules; (2) where is an index set and is a principal ideal ring for each ; (3) Every prime ideal of is a direct sum of at most...
In this paper we relate the deformation method in invariant theory to spherical subgroups. Let be a reductive group, an affine -variety and a spherical subgroup. We show that whenever is affine and its semigroup of weights is saturated, the algebra of -invariant regular functions on has a -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of . The deformation method in its usual form, as developed...
If is a domain with the ascending chain condition on (integral) invertible ideals, then the group of its invertible ideals is generated by the set of maximal invertible ideals. In this note we study some properties of and we prove that, if is a free group on , then is a locally factorial Krull domain.
Henriksen and Isbell showed in 1962 that some commutative rings admit total orderings that violate equational laws (in the language of lattice-ordered rings) that are satisfied by all totally-ordered fields. In this paper, we review the work of Henriksen and Isbell on this topic, construct and classify some examples that illustrate this phenomenon using the valuation theory of Hion (in the process, answering a question posed in [E]) and, finally, prove that a base for the equational theory of totally-ordered...