Das zariskische Diskriminantenkriterium und die Fortsetzung von Derivationen.
Soit un anneau de Dedekind, de corps des fractions , et soit une extension galoisienne de , dont le groupe de Galois est cyclique d’ordre premier. On note la clôture intégrale de dans . Il existe une unique décomposition du -module en somme directe de sous-modules indécomposables. On détermine cette décomposition lorsque est un corps local ou un corps de nombres. Le résultat dépend d’une part des caractères irréductibles de sur , d’autre part des nombres de ramification associés...
Maps between deformation functors of modules are given which generalise the maps induced by the Knörrer functors. These maps become isomorphisms after introducing certain equations in the target functor restricting the Zariski tangent space. Explicit examples are given on how the isomorphisms extend results about deformation theory and classification of MCM modules to higher dimensions.
We study a deformation of the Kummer sequence to the radicial sequence over an -algebra, which is somewhat dual for the deformation of the Artin-Schreier sequence to the radicial sequence, studied by Saidi. We also discuss some relations between our sequences and the embedding of a finite flat commutative group scheme into a connected smooth affine commutative group schemes, constructed by Grothendieck.
This note summarizes a presentation made at the Third International Meeting on Integer Valued Polynomials and Problems in Commutative Algebra. All the work behind it is joint with Scott T. Chapman, and will appear in [2]. Let represent the ring of polynomials with rational coefficients which are integer-valued at integers. We determine criteria for two such polynomials to have the same image set on .