Nicht-ausgeartete reguläre Überlagerungen.
Let be an associative unital ring and let be a strongly nil clean element. We introduce a new idea for examining the properties of these elements. This approach allows us to generalize some results on nil clean and strongly nil clean rings. Also, using this technique many previous proofs can be significantly shortened. Some shorter proofs concerning nil clean elements in rings in general, and in matrix rings in particular, are presented, together with some generalizations of these results.
In this paper, we give new characterizations of the --Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non--Bézout --Bézout rings and examples of non--Bézout --Bézout rings.