Page 1

Displaying 1 – 9 of 9

Showing per page

Lifting solutions over Galois rings.

Javier Gómez-Calderón (1990)

Extracta Mathematicae

In this note we generalize some results from finite fields to Galois rings which are finite extensions of the ring Zpm of integers modulo pm where p is a prime and m ≥ 1.

Linear transforms supporting circular convolution over a commutative ring with identity

Mohamed Mounir Nessibi (1995)

Commentationes Mathematicae Universitatis Carolinae

We consider a commutative ring R with identity and a positive integer N . We characterize all the 3-tuples ( L 1 , L 2 , L 3 ) of linear transforms over R N , having the “circular convolution” property, i.eṡuch that x * y = L 3 ( L 1 ( x ) L 2 ( y ) ) for all x , y R N .

Local monomialization of transcendental extensions

Steven Dale CUTKOSKY (2005)

Annales de l’institut Fourier

Suppose that R S are regular local rings which are essentially of finite type over a field k of characteristic zero. If V is a valuation ring of the quotient field K of S which dominates S , then we show that there are sequences of monoidal transforms (blow ups of regular primes) R R 1 and S S 1 along V such that R 1 S 1 is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.

Currently displaying 1 – 9 of 9

Page 1