Page 1 Next

Displaying 1 – 20 of 52

Showing per page

On a notion of “Galois closure” for extensions of rings

Manjul Bhargava, Matthew Satriano (2014)

Journal of the European Mathematical Society

We introduce a notion of “Galois closure” for extensions of rings. We show that the notion agrees with the usual notion of Galois closure in the case of an S n degree n extension of fields. Moreover, we prove a number of properties of this construction; for example, we show that it is functorial and respects base change. We also investigate the behavior of this Galois closure construction for various natural classes of ring extensions.

On algebraic closures.

R. Raphael (1992)

Publicacions Matemàtiques

This is a description of some different approaches which have been taken to the problem of generalizing the algebraic closure of a field. Work surveyed is by Enoch and Hochster (commutative algebra), Raphael (categories and rings of quotients), Borho (the polynomial approach), and Carson (logic).Later work and applications are given.

On Bhargava rings

Mohamed Mahmoud Chems-Eddin, Omar Ouzzaouit, Ali Tamoussit (2023)

Mathematica Bohemica

Let D be an integral domain with the quotient field K , X an indeterminate over K and x an element of D . The Bhargava ring over D at x is defined to be 𝔹 x ( D ) : = { f K [ X ] : for all a D , f ( x X + a ) D [ X ] } . In fact, 𝔹 x ( D ) is a subring of the ring of integer-valued polynomials over D . In this paper, we aim to investigate the behavior of 𝔹 x ( D ) under localization. In particular, we prove that 𝔹 x ( D ) behaves well under localization at prime ideals of D , when D is a locally finite intersection of localizations. We also attempt a classification of integral domains D ...

On extending C k functions from an open set to with applications

Walter D. Burgess, Robert M. Raphael (2023)

Czechoslovak Mathematical Journal

For k { } and U open in , let C k ( U ) be the ring of real valued functions on U with the first k derivatives continuous. It is shown that for f C k ( U ) there is g C ( ) with U coz g and h C k ( ) with f g | U = h | U . The function f and its k derivatives are not assumed to be bounded on U . The function g is constructed using splines based on the Mollifier function. Some consequences about the ring C k ( ) are deduced from this, in particular that Q cl ( C k ( ) ) = Q ( C k ( ) ) .

Currently displaying 1 – 20 of 52

Page 1 Next