On a theorem of Fröberg and saturated graphs.
The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.
In this paper, we use a characterization of -modules such that to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting to be the local cohomology functor of with respect to the maximal ideal where is the Krull dimension of .
Let , , be ideals of a Noetherian local ring . Let and be finitely generated -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of and , where is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and is the Matlis dual functor. We show that if is a -dimensional complete Cohen-Macaulay ring and ...
Let be a local ring and a semidualizing module of . We investigate the behavior of certain classes of generalized Cohen-Macaulay -modules under the Foxby equivalence between the Auslander and Bass classes with respect to . In particular, we show that generalized Cohen-Macaulay -modules are invariant under this equivalence and if is a finitely generated -module in the Auslander class with respect to such that is surjective Buchsbaum, then is also surjective Buchsbaum.
We obtain, in a simple way, an estimate for the Noether exponent of an ideal I without embedded components (i.e. we estimate the smallest number μ such that ).
Let be a field and be the standard bigraded polynomial ring over . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” -modules with respect to . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to are considered.
In this note we give a description of a morphism related to the structure of the canonical model of the Rees algebra R(I) of an ideal I in a local ring. As an application we obtain Ikeda's criteria for the Gorensteinness of R(I) and a result of Herzog-Simis-Vasconcelos characterizing when the canonical module of R(I) has the expected form.