The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 19 of 19

Showing per page

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

On Cohen-Macaulay rings

Edgar E. Enochs, Jenda M. G. Overtoun (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we use a characterization of R -modules N such that f d R N = p d R N to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the d t h local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R .

On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals

Thiago H. Freitas, Victor H. Jorge Pérez (2019)

Czechoslovak Mathematical Journal

Let 𝔞 , I , J be ideals of a Noetherian local ring ( R , 𝔪 , k ) . Let M and N be finitely generated R -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of H I , J t ( M ) and D ( H I , J t ( M ) ) , where t is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and D ( - ) : = Hom R ( - , E R ( k ) ) is the Matlis dual functor. We show that if R is a d -dimensional complete Cohen-Macaulay ring and H I , J i ( R ) = 0 ...

On the invariance of certain types of generalized Cohen-Macaulay modules under Foxby equivalence

Kosar Abolfath Beigi, Kamran Divaani-Aazar, Massoud Tousi (2022)

Czechoslovak Mathematical Journal

Let R be a local ring and C a semidualizing module of R . We investigate the behavior of certain classes of generalized Cohen-Macaulay R -modules under the Foxby equivalence between the Auslander and Bass classes with respect to C . In particular, we show that generalized Cohen-Macaulay R -modules are invariant under this equivalence and if M is a finitely generated R -module in the Auslander class with respect to C such that C R M is surjective Buchsbaum, then M is also surjective Buchsbaum.

On the Noether exponent

Anna Stasica (2003)

Annales Polonici Mathematici

We obtain, in a simple way, an estimate for the Noether exponent of an ideal I without embedded components (i.e. we estimate the smallest number μ such that ( r a d I ) μ I ).

On the structure of sequentially Cohen-Macaulay bigraded modules

Leila Parsaei Majd, Ahad Rahimi (2015)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x m , y 1 , ... , y n ] be the standard bigraded polynomial ring over K . In this paper, we explicitly describe the structure of finitely generated bigraded “sequentially Cohen-Macaulay” S -modules with respect to Q = ( y 1 , ... , y n ) . Next, we give a characterization of sequentially Cohen-Macaulay modules with respect to Q in terms of local cohomology modules. Cohen-Macaulay modules that are sequentially Cohen-Macaulay with respect to Q are considered.

Currently displaying 1 – 19 of 19

Page 1