Tensor products of Clifford modules and linear maximal Cohen-Macaulay modules on quadrics
Let X be a quotient surface singularity, and define as the directed graph of maximal Cohen-Macaulay (MCM) modules with edges corresponding to deformation incidences. We conjecture that the number of connected components of is equal to the order of the divisor class group of X, and when X is a rational double point (RDP), we observe that this follows from a result of A. Ishii. We view this as an enrichment of the McKay correspondence. For a general quotient singularity X, we prove the conjecture...
Let be a polynomial ring in variables and let be a strictly increasing sequence of integers. Boij and Söderberg conjectured the existence of graded -modules of finite length having pure free resolution of type in the sense that for the -th syzygy module of has generators only in degree .This paper provides a construction, in characteristic zero, of modules with this property that are also -equivariant. Moreover, the construction works over rings of the form where is a polynomial...
Let denote a finite index subgroup of the modular group and let denote a finite-dimensional complex representation of Let denote the collection of holomorphic vector-valued modular forms for and let denote the collection of modular forms on . Then is a -graded -module. It has been proven that may not be projective as a -module. We prove that is Cohen-Macaulay as a -module. We also explain how to apply this result to prove that if is a polynomial ring, then is a free...