Successioni di Gorenstein e proprietà
Maria Grazia Marinari (1972)
Rendiconti del Seminario Matematico della Università di Padova
Rosalba Barattero (1973)
Rendiconti del Seminario Matematico della Università di Padova
Sandra Chiaruttini, Tomaso Millevoi (1975)
Rendiconti del Seminario Matematico della Università di Padova
Tomaso Millevoi (1973)
Rendiconti del Seminario Matematico della Università di Padova
Massoud Halek-Shahmirzadi (1974/1975)
Séminaire Dubreil. Algèbre et théorie des nombres
Bernard Ballet (1972)
Bulletin de la Société Mathématique de France
Craig Huneke, Roger Wiegand (1998)
Mathematica Scandinavica
S.M. Bhatwadekar, H. Lindel, R.A. Rao (1985)
Inventiones mathematicae
Aldo Conca, Giuseppe Valla (2004)
Collectanea Mathematica
Rodney Y. Sharp (1973)
Mathematische Zeitschrift
Edgar E. Enochs (1989)
Mathematica Scandinavica
Craig Huneke, Vijaylaxmi Trivedi (1997)
Manuscripta mathematica
Yulong Yang, Guangjun Zhu, Yijun Cui, Shiya Duan (2024)
Czechoslovak Mathematical Journal
Let be a finite simple graph with the vertex set and let be its edge ideal in the polynomial ring . We compute the depth and the Castelnuovo-Mumford regularity of when or is a graph obtained from Cohen-Macaulay bipartite graphs , by the operation or operation, respectively.
Paul Roberts (1976)
Annales scientifiques de l'École Normale Supérieure
J. DASSOW (1975)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Markus Brodmann (1975)
Commentarii mathematici Helvetici
A. Bouvier, F. Burq, G. Germain (1980)
Publications du Département de mathématiques (Lyon)
P. Ribenboim (1976)
Journal für die reine und angewandte Mathematik
Roger Wiegand, Sylvia Wiegand (1972)
Mathematische Zeitschrift
Noômen Jarboui (2002)
Publicacions Matemàtiques
A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dimv(R) = 2 and L = qf(R).