Page 1

Displaying 1 – 5 of 5

Showing per page

k -torsionless modules with finite Gorenstein dimension

Maryam Salimi, Elham Tavasoli, Siamak Yassemi (2012)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring. It is shown that the finitely generated R -module M with finite Gorenstein dimension is reflexive if and only if M 𝔭 is reflexive for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 1 , and G- dim R 𝔭 ( M 𝔭 ) depth ( R 𝔭 ) - 2 for 𝔭 Spec ( R ) with depth ( R 𝔭 ) 2 . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for n 2 we give a characterization of n -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown...

Kaplansky classes

Edgar E. Enochs, J. A. López-Ramos (2002)

Rendiconti del Seminario Matematico della Università di Padova

Kronecker modules and reductions of a pair of bilinear forms

Giovanni Falcone, M. Alessandra Vaccaro (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We give a short overview on the subject of canonical reduction of a pair of bilinear forms, each being symmetric or alternating, making use of the classification of pairs of linear mappings between vector spaces given by J. Dieudonné.

Currently displaying 1 – 5 of 5

Page 1