Über das assoziierte Ideal zyklischer Polytope
The goal of this paper is to develop tools to study maximal families of Gorenstein quotients A of a polynomial ring R. We prove a very general theorem on deformations of the homogeneous coordinate ring of a scheme Proj(A) which is defined as the degeneracy locus of a regular section of the dual of some sheaf M of rank r supported on say an arithmetically Cohen-Macaulay subscheme Proj(B) of Proj(R). Under certain conditions (notably; M maximally Cohen-Macaulay and ∧r M ≈ KB(t) a twist of the canonical...
Let R be a commutative Noetherian ring, I a proper ideal of R, and M be a finitely generated R-module. We provide bounds for the cohomological dimension of the R-module M with respect to the ideal I in several cases.