Page 1 Next

Displaying 1 – 20 of 69

Showing per page

On a homology of algebras with unit

Jacek Dębecki (2014)

Annales Polonici Mathematici

We present a very general construction of a chain complex for an arbitrary (even non-associative and non-commutative) algebra with unit and with any topology over a field with a suitable topology. We prove that for the algebra of smooth functions on a smooth manifold with the weak topology the homology vector spaces of this chain complex coincide with the classical singular homology groups of the manifold with real coefficients. We also show that for an associative and commutative algebra with unit...

On co-Gorenstein modules, minimal flat resolutions and dual Bass numbers

Zahra Heidarian, Hossein Zakeri (2015)

Colloquium Mathematicae

The dual of a Gorenstein module is called a co-Gorenstein module, defined by Lingguang Li. In this paper, we prove that if R is a local U-ring and M is an Artinian R-module, then M is a co-Gorenstein R-module if and only if the complex H o m R ̂ ( ( , R ̂ ) , M ) is a minimal flat resolution for M when we choose a suitable triangular subset on R̂. Moreover we characterize the co-Gorenstein modules over a local U-ring and Cohen-Macaulay local U-ring.

On Cohen-Macaulay rings

Edgar E. Enochs, Jenda M. G. Overtoun (1994)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we use a characterization of R -modules N such that f d R N = p d R N to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting N to be the d t h local cohomology functor of R with respect to the maximal ideal where d is the Krull dimension of R .

On deformation method in invariant theory

Dmitri Panyushev (1997)

Annales de l'institut Fourier

In this paper we relate the deformation method in invariant theory to spherical subgroups. Let G be a reductive group, Z an affine G -variety and H G a spherical subgroup. We show that whenever G / H is affine and its semigroup of weights is saturated, the algebra of H -invariant regular functions on Z has a G -invariant filtration such that the associated graded algebra is the algebra of regular functions of some explicit horospherical subgroup of G . The deformation method in its usual form, as developed...

Currently displaying 1 – 20 of 69

Page 1 Next