Majoration des caractéristiques d'Euler-Poincaré partielles
Let be a commutative Noetherian local ring, be an ideal of and a finitely generated -module such that and , where is the cohomological dimension of with respect to and is the -grade of . Let be the Matlis dual functor, where is the injective hull of the residue field . We show that there exists the following long exact sequence where is a non-negative integer, is a regular sequence in on and, for an -module , is the th local cohomology module of with respect...
Let be a complete local ring, an ideal of and and two Matlis reflexive -modules with . We prove that if is a finitely generated -module, then is Matlis reflexive for all and in the following cases: (a) ; (b) ; where is the cohomological dimension of in ; (c) . In these cases we also prove that the Bass numbers of are finite.
We study matrix factorizations of a potential W which is a section of a line bundle on an algebraic stack. We relate the corresponding derived category (the category of D-branes of type B in the Landau-Ginzburg model with potential W) with the singularity category of the zero locus of W generalizing a theorem of Orlov. We use this result to construct push-forward functors for matrix factorizations with relatively proper support.
Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying . If and are ideals of R, we get a necessary and sufficient condition for to satisfy and simultaneously. We also find some sufficient...
A combinatorial description of the minimal free resolution of a lattice ideal allows us to the connection of Integer Linear Programming and Al1gebra. The non null reduced homology spaces of some simplicial complexes are the key. The extremal rays of the associated cone reduce the number of variables.
In this paper, we study the Castelnuovo-Mumford regularity of square-free monomial ideals generated in degree . We define some operations on the clutters associated to such ideals and prove that the regularity is preserved under these operations. We apply these operations to introduce some classes of ideals with linear resolutions and also show that any clutter corresponding to a triangulation of the sphere does not have linear resolution while any proper subclutter of it has a linear resolution....