Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Rational BV-algebra in string topology

Yves Félix, Jean-Claude Thomas (2008)

Bulletin de la Société Mathématique de France

Let M be a 1-connected closed manifold of dimension m and L M be the space of free loops on M . M.Chas and D.Sullivan defined a structure of BV-algebra on the singular homology of L M , H * ( L M ; k ) . When the ring of coefficients is a field of characteristic zero, we prove that there exists a BV-algebra structure on the Hochschild cohomology H H * ( C * ( M ) ; C * ( M ) ) which extends the canonical structure of Gerstenhaber algebra. We construct then an isomorphism of BV-algebras between H H * ( C * ( M ) ; C * ( M ) ) and the shifted homology H * + m ( L M ; k ) . We also prove that the...

Relative Buchsbaumness of bigraded modules

Keivan Borna, Ahad Rahimi, Syrous Rasoulyar (2012)

Colloquium Mathematicae

We study finitely generated bigraded Buchsbaum modules over a standard bigraded polynomial ring with respect to one of the irrelevant bigraded ideals. The regularity and the Hilbert function of graded components of local cohomology at the finiteness dimension level are considered.

Relative Gorenstein injective covers with respect to a semidualizing module

Elham Tavasoli, Maryam Salimi (2017)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring and let C be a semidualizing R -module. We prove a result about the covering properties of the class of relative Gorenstein injective modules with respect to C which is a generalization of Theorem 1 by Enochs and Iacob (2015). Specifically, we prove that if for every G C -injective module G , the character module G + is G C -flat, then the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is closed under direct sums and direct limits. Also, it is proved that under the above hypotheses the class 𝒢ℐ C ( R ) 𝒜 C ( R ) is covering....

Relative multiplication and distributive modules

José Escoriza, Blas Torrecillas (1997)

Commentationes Mathematicae Universitatis Carolinae

We study the construction of new multiplication modules relative to a torsion theory τ . As a consequence, τ -finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.

Relative tilting modules with respect to a semidualizing module

Maryam Salimi (2019)

Czechoslovak Mathematical Journal

Let R be a commutative Noetherian ring, and let C be a semidualizing R -module. The notion of C -tilting R -modules is introduced as the relative setting of the notion of tilting R -modules with respect to C . Some properties of tilting and C -tilting modules and the relations between them are mentioned. It is shown that every finitely generated C -tilting R -module is C -projective. Finally, we investigate some kernel subcategories related to C -tilting modules.

Representation stability for syzygies of line bundles on Segre–Veronese varieties

Claudiu Raicu (2016)

Journal of the European Mathematical Society

The rational homology groups of packing complexes are important in algebraic geometry since they control the syzygies of line bundles on projective embeddings of products of projective spaces (Segre–Veronese varieties). These complexes are a common generalization of the multidimensional chessboard complexes and of the matching complexes of complete uniform hypergraphs, whose study has been a topic of interest in combinatorial topology. We prove that the multivariate version of representation stability,...

Résolution des fibrés généraux stables de rang 2 sur 3 de classes de Chern c 1 = - 1 , c 2 = 2 p 6  : I

Olivier Rahavandrainy (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

On considère l’espace de modules M ( c 1 , c 2 ) des fibrés stables de rang 2 sur k 3 , de classes de Chern c 1 , c 2 , k étant un corps algébriquement clos de caractéristique quelconque. Si ( c 1 = 0 , c 2 > 0 ) ou ( c 1 = - 1 , c 2 = 2 p 6 ), on sait ([7], [9]) que M ( c 1 , c 2 ) a une composante irréductible dont le point générique ( c 1 , c 2 ) a la cohomologie naturelle. Nous avons calculé ([16]) la résolution minimale de ( 0 , c 2 ) . Dans cet article, nous voulons déterminer celle de ( - 1 , c 2 ) si c 2 > ( v + 2 ) ( 2 v 2 + 3 v - 1 ) 6 v + 7 , v est le plus petit entier tel que h 0 ( ( v ) ) > 0 . Par un procédé standard rappelé dans [16], on se ramène à des...

Currently displaying 1 – 20 of 28

Page 1 Next