Page 1 Next

Displaying 1 – 20 of 40

Showing per page

C -Gorenstein projective, injective and flat modules

Xiao Yan Yang, Zhong Kui Liu (2010)

Czechoslovak Mathematical Journal

By analogy with the projective, injective and flat modules, in this paper we study some properties of C -Gorenstein projective, injective and flat modules and discuss some connections between C -Gorenstein injective and C -Gorenstein flat modules. We also investigate some connections between C -Gorenstein projective, injective and flat modules of change of rings.

Caractères numériques et fonctions de Macaulay.

Mireille Martin-Deschamps (2004)

Collectanea Mathematica

The postulation of Aritméticamente Cohen-Macaulay (ACM) subschemes of the projective space PkN is well known in the case of codimension 2. There are many different ways of recording this numerical information: numerical character of Gruson/Peskine, h-vector, postulation character of Martin-Deschamps/Perrin... The first aim of this paper is to show the equivalence of these notions. The second and most important aim, is to study the postulation of codimension 3 ACM subschemes of PN. We use a result...

Castelnuovo-Mumford regularity of products of ideals.

Aldo Conca, Jürgen Herzog (2003)

Collectanea Mathematica

The Castelnuovo-Mumford regularity reg(M) is one of the most important invariants of a finitely generated graded module M over a polynomial ring R. For instance, it measures the amount of computational resources that working with M requires. In general one knows that the regularity of a module can be doubly exponential in the degrees of the minimal generators and in the number of the variables. On the other hand, in many situations one has or one conjectures a much better behavior. One may ask,...

Categorification of the virtual braid groups

Anne-Laure Thiel (2011)

Annales mathématiques Blaise Pascal

We extend Rouquier’s categorification of the braid groups by complexes of Soergel bimodules to the virtual braid groups.

Cofiniteness and finiteness of local cohomology modules over regular local rings

Jafar A'zami, Naser Pourreza (2017)

Czechoslovak Mathematical Journal

Let ( R , 𝔪 ) be a commutative Noetherian regular local ring of dimension d and I be a proper ideal of R such that mAss R ( R / I ) = Assh R ( I ) . It is shown that the R -module H I ht ( I ) ( R ) is I -cofinite if and only if cd ( I , R ) = ht ( I ) . Also we present a sufficient condition under which this condition the R -module H I i ( R ) is finitely generated if and only if it vanishes.

Cofiniteness of generalized local cohomology modules

Kamran Divaani-Aazar, Reza Sazeedeh (2004)

Colloquium Mathematicae

Let denote an ideal of a commutative Noetherian ring R, and M and N two finitely generated R-modules with pd M < ∞. It is shown that if either is principal, or R is complete local and is a prime ideal with dim R/ = 1, then the generalized local cohomology module H i ( M , N ) is -cofinite for all i ≥ 0. This provides an affirmative answer to a question proposed in [13].

Cofiniteness of torsion functors of cofinite modules

Reza Naghipour, Kamal Bahmanpour, Imaneh Khalili Gorji (2014)

Colloquium Mathematicae

Let R be a Noetherian ring and I an ideal of R. Let M be an I-cofinite and N a finitely generated R-module. It is shown that the R-modules T o r i R ( N , M ) are I-cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 1 or dim Supp(N) ≤ 2. This immediately implies that if I has dimension one (i.e., dim R/I = 1) then the R-modules T o r i R ( N , H I j ( M ) ) are I-cofinite for all i,j ≥ 0. Also, we prove that if R is local, then the R-modules T o r i R ( N , M ) are I-weakly cofinite for all i ≥ 0 whenever dim Supp(M) ≤ 2 or dim Supp(N) ≤ 3. Finally, it is shown that...

Cohomological dimension filtration and annihilators of top local cohomology modules

Ali Atazadeh, Monireh Sedghi, Reza Naghipour (2015)

Colloquium Mathematicae

Let denote an ideal in a Noetherian ring R, and M a finitely generated R-module. We introduce the concept of the cohomological dimension filtration = M i i = 0 c , where c = cd(,M) and M i denotes the largest submodule of M such that c d ( , M i ) i . Some properties of this filtration are investigated. In particular, if (R,) is local and c = dim M, we are able to determine the annihilator of the top local cohomology module H c ( M ) , namely A n n R ( H c ( M ) ) = A n n R ( M / M c - 1 ) . As a consequence, there exists an ideal of R such that A n n R ( H c ( M ) ) = A n n R ( M / H ( M ) ) . This generalizes the main results...

Currently displaying 1 – 20 of 40

Page 1 Next