Displaying 61 – 80 of 169

Showing per page

Ideal-theoretic characterizations of valuation and Prüfer monoids

Franz Halter-Koch (2004)

Archivum Mathematicum

It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen r -system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains.

Integer-valued polynomials on algebras: a survey

Sophie Frisch (2010)

Actes des rencontres du CIRM

We compare several different concepts of integer-valued polynomials on algebras and collect the few results and many open questions to be found in the literature.

Inverse zero-sum problems in finite Abelian p-groups

Benjamin Girard (2010)

Colloquium Mathematicae

We study the minimal number of elements of maximal order occurring in a zero-sumfree sequence over a finite Abelian p-group. For this purpose, and in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, our method implies that, if we denote by exp(G) the exponent of the finite Abelian p-group G considered, every zero-sumfree sequence S with maximal possible length over...

Matroids over a ring

Alex Fink, Luca Moci (2016)

Journal of the European Mathematical Society

We introduce the notion of a matroid M over a commutative ring R , assigning to every subset of the ground set an R -module according to some axioms. When R is a field, we recover matroids. When R = , and when R is a DVR, we get (structures which contain all the data of) quasi-arithmetic matroids, and valuated matroids, i.e. tropical linear spaces, respectively. More generally, whenever R is a Dedekind domain, we extend all the usual properties and operations holding for matroids (e.g., duality), and...

Maximal non-Jaffard subrings of a field.

Mabrouk Ben Nasr, Noôman Jarboui (2000)

Publicacions Matemàtiques

A domain R is called a maximal non-Jaffard subring of a field L if R ⊂ L, R is not a Jaffard domain and each domain T such that R ⊂ T ⊆ L is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dimv R = dim R + 1. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when R is integrally...

Currently displaying 61 – 80 of 169