Displaying 41 – 60 of 78

Showing per page

On wsq-primary ideals

Emel Aslankarayiğit Uğurlu, El Mehdi Bouba, Ünsal Tekir, Suat Koç (2023)

Czechoslovak Mathematical Journal

We introduce weakly strongly quasi-primary (briefly, wsq-primary) ideals in commutative rings. Let R be a commutative ring with a nonzero identity and Q a proper ideal of R . The proper ideal Q is said to be a weakly strongly quasi-primary ideal if whenever 0 a b Q for some a , b R , then a 2 Q or b Q . Many examples and properties of wsq-primary ideals are given. Also, we characterize nonlocal Noetherian von Neumann regular rings, fields, nonlocal rings over which every proper ideal is wsq-primary, and zero dimensional...

Polynomial cycles in certain local domains

T. Pezda (1994)

Acta Arithmetica

1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple x , x , . . . , x k - 1 of distinct elements of R is called a cycle of f if f ( x i ) = x i + 1 for i=0,1,...,k-2 and f ( x k - 1 ) = x . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number 7 7 · 2 N , depending only on the degree N of K. In this note we consider...

Proximity relations for real rank one valuations dominating a local regular ring.

Angel Granja, Cristina Rodríguez (2003)

Revista Matemática Iberoamericana

We study 0-dimensional real rank one valuations centered in a regular local ring of dimension n > 2 such that the associated valuation ring can be obtained from the regular ring by a sequence of quadratic transforms. We define two classical invariants associated to the valuation (the refined proximity matrix and the multiplicity sequence) and we show that are equivalent data of the valuation.

Pseudo-valuation rings. II

David F. Anderson, Ayman Badawi, David E. Dobbs (2000)

Bollettino dell'Unione Matematica Italiana

Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se R , M è un PVR, allora ogni sopra-anello di R è un PVR se (e soltanto se) R u è quasi-locale per ciascun elemento u di M : M . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario R , avente Z R come insieme di zero-divisori. Per esempio, se P è un primo «forte» di R e contiene un elemento non-zero divisore di R , allora P : P è un sopra-anello...

R C * -поля

Ю.Л. Ершов, Ju. L. Eršov, Ǔ. L. Eršov, Ju. L. Eršov (1994)

Algebra i Logika

Currently displaying 41 – 60 of 78