On the notions of characteristics and type for modules and their applications
1. Let R be a domain and f ∈ R[X] a polynomial. A k-tuple of distinct elements of R is called a cycle of f if for i=0,1,...,k-2 and . The number k is called the length of the cycle. A tuple is a cycle in R if it is a cycle for some f ∈ R[X]. It has been shown in [1] that if R is the ring of all algebraic integers in a finite extension K of the rationals, then the possible lengths of cycles of R-polynomials are bounded by the number , depending only on the degree N of K. In this note we consider...
We study 0-dimensional real rank one valuations centered in a regular local ring of dimension n > 2 such that the associated valuation ring can be obtained from the regular ring by a sequence of quadratic transforms. We define two classical invariants associated to the valuation (the refined proximity matrix and the multiplicity sequence) and we show that are equivalent data of the valuation.
Viene data una condizione sufficiente affinchè un sopra-anello di un anello di pseudo-valutazione (PVR) sia ancora un PVR. Da ciò segue che se è un PVR, allora ogni sopra-anello di è un PVR se (e soltanto se) è quasi-locale per ciascun elemento di . Vari risultati sono dimostrati per un ideale primo di un anello commutativo arbitrario , avente come insieme di zero-divisori. Per esempio, se è un primo «forte» di e contiene un elemento non-zero divisore di , allora è un sopra-anello...