Errata et addenda à «Lemmes de zéros dans les groupes algébriques commutatifs»
An algebra homomorphism of the locatized affine rings of an algebraic variety is continuous in the Krull topology of the respective local rings. It is not necessarily open or closed in the Krull topology. However, we show that the induced map on the associated analytic local rings is also open and closed in the Krull topology. To do this we prove a conjecture of Tougeron which states that if is an analytic curve on an analytic variety and is a formal power series which is convergent when restricted...
We show that for a holomorphic foliation with singularities in a projective variety such that every leaf is quasiprojective, the set of rational functions that are constant on the leaves form a field whose transcendence degree equals the codimension of the foliation.