Rational intersection cohomology of quotient varieties.
The purpose of this paper is to give a characterization of the relative tangent cone of two analytic curves in with an isolated intersection.
We give a characterization of the relative tangent cone of an analytic curve and an analytic set with an improper isolated intersection. Moreover, we present an effective computation of the intersection multiplicity of a curve and a set with s-metrization.
This article continues the investigation of the analytic intersection algorithm from the perspective of deformation to the normal cone, carried out in the previous papers of the author [7, 8, 9]. The main theorem asserts that, given an analytic set V and a linear subspace S, every collection of hyperplanes, admissible with respect to an algebraic bicone B, realizes the generalized intersection index of V and S. This result is important because the conditions for a collection of hyperplanes to be...