Permanence of local properties under hyperplane sections
We study the homological intersection behaviour for the Chern cells of the universal bundle of G(d,Qₙ), the space of [d]-planes in the smooth quadric Qₙ in over the field of complex numbers. For this purpose we define some auxiliary cells in terms of which the intersection properties of the Chern cells can be described. This is then applied to obtain some new necessary conditions for the global decomposability of a 2-form of constant rank.
Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
We prove the conjectures of Graham–Kumar [GrKu08] and Griffeth–Ram [GrRa04] concerning the alternation of signs in the structure constants for torus-equivariant -theory of generalized flag varieties . These results are immediate consequences of an equivariant homological Kleiman transversality principle for the Borel mixing spaces of homogeneous spaces, and their subvarieties, under a natural group action with finitely many orbits. The computation of the coefficients in the expansion of the equivariant...
Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.
We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.
2000 Mathematics Subject Classification: 14N10, 14C17.We work over an algebraically closed field of characteristic zero. The group PGL(4) acts naturally on PN which parameterizes surfaces of a given degree in P3. The orbit of a surface under this action is the image of a rational map PGL(4) ⊂ P15→PN. The closure of the orbit is a natural and interesting object to study. Its predegree is defined as the degree of the orbit closure multiplied by the degree of the above map restricted to a general Pj,...
A “relative” -theory group for holomorphic or algebraic vector bundles on a compact or quasiprojective complex manifold is constructed, and Chern-Simons type characteristic classes are defined on this group in the spirit of Nadel. In the projective case, their coincidence with the Abel-Jacobi image of the Chern classes of the bundles is proved. Some applications to families of holomorphic bundles are given and two Riemann-Roch type theorems are proved for these classes.
We consider complex analytic sets with proper intersection. We find their regular separation exponent using basic notions of intersection multiplicity theory.