Page 1

Displaying 1 – 10 of 10

Showing per page

Solutions to the XXX type Bethe ansatz equations and flag varieties

E. Mukhin, A. Varchenko (2003)

Open Mathematics

We consider a version of the A N Bethe equation of XXX type and introduce a reporduction procedure constructing new solutions of this equation from a given one. The set of all solutions obtained from a given one is called a population. We show that a population is isomorphic to the sl N+1 flag variety and that the populations are in one-to-one correspondence with intersection points of suitable Schubert cycles in a Grassmanian variety. We also obtain similar results for the root systems B N and...

Sur le théorème du produit

Gaël Rémond (2001)

Journal de théorie des nombres de Bordeaux

On donne des versions raffinées effectives du théorème du produit de G. Faltings et de son principal corollaire. Le théorème montre que si l’ensemble des zéros d’indice σ d’un polynôme multihomogène P a une composante commune avec l’ensemble des zéros d’indice σ + alors cette composante, sous-variété d’un produit d’espaces projectifs, est elle-même un produit à condition que les rapports des degrés de P soient grands en fonction de . Le corollaire le plus utile implique que, sous une condition plus...

Sur les orbites d’un sous-groupe sphérique dans la variété des drapeaux

Nicolas Ressayre (2004)

Bulletin de la Société Mathématique de France

Soient G un groupe algébrique complexe réductif et connexe, B un sous-groupe de Borel de G et H un sous-groupe sphérique de G . Soit X un plongement G × G -équivariant de G . Nous savons que B × H n’a qu’un nombre fini d’orbites dans G  ; nous montrons qu’il n’en a qu’un nombre fini dans X . Soit V ¯ l’adhérence dans X d’une orbite de B × H dans G et 𝒪 ¯ l’adhérence d’une orbite de G × G dans X . Si X est toroïdal, nous montrons que l’intersection V ¯ 𝒪 ¯ est propre dans X et la décrivons ensemblistement. Si de plus X est lisse,...

Currently displaying 1 – 10 of 10

Page 1