Loading [MathJax]/extensions/MathZoom.js
We describe a new invariant for the action of the absolute Galois groups on the set of Grothendieck dessins. It uses the fact that the automorphism groups of regular dessins are isomorphic to automorphism groups of the corresponding Riemman surfaces and define linear represenatations of the space of holomorphic differentials. The characters of these representations give more precise information about the action of the Galois group than all previously known invariants, as it is shown by a series...
We present examples of characters of absolute Galois groups of number fields that can be recovered through their action by automorphisms on the profinite completion of the braid groups, using a “rigidity” approach. The way we use to recover them is through classical representations of the braid groups, and in particular through the Burau representation. This enables one to extend these characters to Grothendieck-Teichmüller groups.
Soit un revêtement ramifié de défini sur . Lorsqu’on s’intéresse aux propriétés de rationalité de sur les les corps de nombres, on peut soit exiger que la base soit , soit l’autoriser à être une courbe de genre . Nous comparons ces deux points de vue pour les revêtements non ramifiés en dehors de
There are two mistakes in the referred paper. One is ridiculous and one is significant. But none is serious.
Currently displaying 1 –
6 of
6