On a Galois extension with restricted ramification related to the Selmer group of an elliptic curve with complex multiplication.
Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.
Some results and problems that arise in connection with the foundations of the theory of ruled and rational field extensions are discussed.
In this paper, we show that if and are algebraic real hypersurfaces in (possibly different) complex spaces of dimension at least two and if is a holomorphic mapping defined near a neighborhood of so that , then is also algebraic. Our proof is based on a careful analysis on the invariant varieties and reduces to the consideration of many cases. After a slight modification, the argument is also used to prove a reflection principle, which allows our main result to be stated for mappings...