On a class of rational cuspidal plane curves.
Page 1 Next
Hubert Flenner, Mikhail Zaidenberg (1996)
Manuscripta mathematica
R. O. Buchweitz (1976/1977)
Séminaire sur les singularités des surfaces
Libuše Marková, Marie Švecová (1985)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Dalibor Klucký, Libuše Marková (1985)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Krattenthaler, C. (2000)
Séminaire Lotharingien de Combinatoire [electronic only]
Z. Ran (1986)
Inventiones mathematicae
Fabio Bardelli, Luisella Verdi (1988)
Compositio Mathematica
Richard Ganong (1979)
Journal für die reine und angewandte Mathematik
José J. Aparicio, Angel Granja, Tomás Sánchez-Giralda (1999)
Revista Matemática Iberoamericana
The purpose of this paper is to define a new numerical invariant of valuations centered in a regular two-dimensional regular local ring. For this, we define a sequence of non-negative rational numbers δν = {δν(j)}j ≥ 0 which is determined by the proximity relations of the successive quadratic transformations at the points determined by a valuation ν. This sequence is characterized by seven combinatorial properties, so that any sequence of non-negative rational numbers having the above properties...
Sonia Brivio (1998)
Bollettino dell'Unione Matematica Italiana
Sia una curva irriducibile nodale di genere aritmetico . In queste note vogliamo mostrare come il sistema lineare delle quadriche, contenenti un opportuno modello proiettivo della curva, permette di descrivere i fibrati vettoriali semistabili, di rango , su .
Maria Grazia Cinquegrani (1988)
Manuscripta mathematica
Richard Bassein (1977)
Mathematische Annalen
Luca Chiantini (1981)
Rendiconti del Seminario Matematico della Università di Padova
Płoski, Arkadiusz (2004)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Ichiro Shimada (1992)
Mathematische Annalen
Allen Tannenbaum (1984)
Compositio Mathematica
Edoardo Ballico, Luciana Ramella (1999)
Annales Polonici Mathematici
We prove that for integers n,d,g such that n ≥ 4, g ≥ 2n and d ≥ 2g + 3n + 1, the general (smooth) curve C in with degree d and genus g has a stable normal bundle .
A. Libgober (1986)
Journal für die reine und angewandte Mathematik
Sheng-Li Tan (1994)
Manuscripta mathematica
Bronislaw Wajnryb (1979)
Mathematische Annalen
Page 1 Next