Semistable vector bundles on Mumford curves.
This note gives a survey of some recent results on the stable reduction of covers of the projective line branched at three points.
We construct a global system of real analytic coordinates on the real Teichmüller space of a compact real algebraic curve X, using so-called strict uniformization of the real algebraic curve X. A global coordinate system is then obtained via real quasiconformal deformations of the Kleinian subgroup of PGL2(R) obtained as a group of covering transformations of a strict uniformization of X.
On démontre que tout schéma de variété analytique connexe et simplement connexe à une dimension est un arbre analytique, i.e. une variété analytique (non nécessairement séparée) dont chaque point est point de dissection. L’intégrabilité du groupe local des transitions maximales d’un arbre analytique complètement serré y intervient.Parmi les applications on trouve des résultats de Haefliger sur les feuilletages analytiques de co-dimension un ainsi que des généralisations des théorèmes de Denjoy-Siegel...