The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 5 of 5

Showing per page

Weierstrass Points with First Non-Gap Four on a Double Covering of a Hyperelliptic Curve

Komeda, Jiryo, Ohbuchi, Akira (2004)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.Let H be a 4-semigroup, i.e., a numerical semigroup whose minimum positive element is four. We denote by 4r(H) + 2 the minimum element of H which is congruent to 2 modulo 4. If the genus g of H is larger than 3r(H) − 1, then there is a cyclic covering π : C −→ P^1 of curves with degree 4 and its ramification point P such that the Weierstrass semigroup H(P) of P is H (Komeda [1]). In this paper it is showed that...

Weierstrass Points with First Non-Gap Four on a Double Covering of a Hyperelliptic Curve II

Komeda, Jiryo, Ohbuchi, Akira (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14J26.A 4-semigroup means a numerical semigroup whose minimum positive integer is 4. In [7] we showed that a 4-semigroup with some conditions is the Weierstrass semigroup of a ramification point on a double covering of a hyperelliptic curve. In this paper we prove that the above statement holds for every 4-semigroup.

Currently displaying 1 – 5 of 5

Page 1