Sur l'idéal jacobien d'une courbe plane
We show that the moduli space of SUX (r, L) of rank r bundles of fixed determinant L on a smooth projective curve X is separably unirational.
This is a slightly expanded version of the talk given by the first author at the conference Instantons in complex geometry, at the Steklov Institute in Moscow. The purpose of this talk was to explain the algebraic results of our paper Abelian Yang-Mills theory on Real tori and Theta divisors of Klein surfaces. In this paper we compute determinant index bundles of certain families of Real Dirac type operators on Klein surfaces as elements in the corresponding Grothendieck group of Real line bundles...
Based on the discovery that the δ-invariant is the symplectic codimension of a parametric plane curve singularity, we classify the simple and uni-modal singularities of parametric plane curves under symplectic equivalence. A new symplectic deformation theory of curve singularities is established, and the corresponding cyclic symplectic moduli spaces are reconstructed as canonical ambient spaces for the diffeomorphism moduli spaces which are no longer Hausdorff spaces.
We investigate the relations between the syzygies of the Jacobian ideal of the defining equation for a plane curve and the stability of the sheaf of logarithmic vector fields along , the freeness of the divisor and the Torelli properties of (in the sense of Dolgachev-Kapranov). We show in particular that curves with a small number of nodes and cusps are Torelli in this sense.