O křivce zápalové
Page 1 Next
František Hejzlar (1875)
Časopis pro pěstování mathematiky a fysiky
Karel Zahradník (1878)
Časopis pro pěstování mathematiky a fysiky
Eduard Weyr (1879)
Časopis pro pěstování mathematiky a fysiky
Emil Weyr (1874)
Časopis pro pěstování mathematiky a fysiky
Emil Weyr (1874)
Časopis pro pěstování mathematiky a fysiky
Emil Weyr (1874)
Časopis pro pěstování mathematiky a fysiky
J. P. Šebesta (1879)
Časopis pro pěstování mathematiky a fysiky
Hirokazu Nasu (2010)
Annales de l’institut Fourier
We study the Hilbert scheme of smooth connected curves on a smooth del Pezzo -fold . We prove that any degenerate curve , i.e. any curve contained in a smooth hyperplane section of , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) and (ii) for every line on such that , the normal bundle is trivial (i.e. ). As a consequence, we prove an analogue (for ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components...
Andrea del Centina, Sevin Recillas (1987)
Journal für die reine und angewandte Mathematik
Masanari Kida (1996)
Acta Arithmetica
Ballico, E., Cossidente, A. (2000)
Mathematica Pannonica
Hubert Flenner, Mikhail Zaidenberg (1996)
Manuscripta mathematica
H. Popp (1972)
Journal für die reine und angewandte Mathematik
Kunz, Ernst (2001)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Kay Wingberg (1991)
Journal für die reine und angewandte Mathematik
Shuji Morikawa (2009)
Annales de l’institut Fourier
We know well difference Picard-Vessiot theory, Galois theory of linear difference equations. We propose a general Galois theory of difference equations that generalizes Picard-Vessiot theory. For every difference field extension of characteristic , we attach its Galois group, which is a group of coordinate transformation.
Shuji Morikawa, Hiroshi Umemura (2009)
Annales de l’institut Fourier
We apply the General Galois Theory of difference equations introduced in the first part to concrete examples. The General Galois Theory allows us to define a discrete dynamical system being infinitesimally solvable, which is a finer notion than being integrable. We determine all the infinitesimally solvable discrete dynamical systems on the compact Riemann surfaces.
Paolo Valabrega (1974)
Rendiconti del Seminario Matematico della Università di Padova
Carlos S. Subi (1977)
Annales scientifiques de l'École Normale Supérieure
Pierre Dèbes (1995)
Acta Arithmetica
Page 1 Next