Théorie des indices par rapport à une courbe et une surface du second degré
L’auteur présente des applications élémentaires de la théorie du corps de classes de Kato et Parshin en dimensions 1 et 3 : calcul du conducteur d’une extension de Witt-Artin-Schreier d’un corps local de dimension 1, et étude des revêtements abéliens des surfaces.
We investigate deformation-theoretical properties of curves carrying a half-canonical linear series of fixed dimension. In particular, we improve the previously known bound on the dimension of the corresponding loci in the moduli space and we obtain a natural description of the tangent space to higher theta loci.