Non-classical Gorenstein curves of arithmetic genuas three and four.
The hypersurface in with an isolated quasi-homogeneous elliptic singularity of type , has a natural Poisson structure. We show that the family of del Pezzo surfaces of the corresponding type provides a semiuniversal Poisson deformation of that Poisson structure. We also construct a deformation-quantization of the coordinate ring of such a del Pezzo surface. To this end, we first deform the polynomial algebra to a noncommutative algebra with generators and the following 3 relations labelled...
Recall that a closed subscheme X ⊂ P is non-obstructed if the corresponding point x of the Hilbert scheme Hilbp(t)n is non-singular. A geometric characterization of non-obstructedness is not known even for smooth space curves. The goal of this work is to prove that subcanonical k-Buchsbaum, k ≤ 2, space curves are non-obstructed. As a main tool we use Serre's correspondence between subcanonical curves and vector bundles.
Let X be a sufficiently general smooth k-gonal curve of genus g and R ∈ Pic(X) the degree k spanned line bundle. We find an optimal integer z > 0 such that the line bundle is very ample and projectively normal.
Let be a field of odd characteristic , let be an irreducible separable polynomial of degree with big Galois group (the symmetric group or the alternating group). Let be the hyperelliptic curve and its jacobian. We prove that does not have nontrivial endomorphisms over an algebraic closure of if either or .
We prove that a very ample special line bundle of degree on a general -gonal curve is normally generated if the degree of the base locus of its dual bundle does not exceed , where .