Displaying 41 – 60 of 88

Showing per page

Enumerative geometry of divisorial families of rational curves

Ziv Ran (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We compute the number of irreducible rational curves of given degree with 1 tacnode in 2 or 1 node in 3 meeting an appropriate generic collection of points and lines. As a byproduct, we also compute the number of rational plane curves of degree d passing through 3 d - 2 given points and tangent to a given line. The method is ‘classical’, free of Quantum Cohomology.

Equations of hyperelliptic modular curves

Josep Gonzalez Rovira (1991)

Annales de l'institut Fourier

We compute, in a unified way, the equations of all hyperelliptic modular curves. The main tool is provided by a class of modular functions introduced by Newman in 1957. The method uses the action of the hyperelliptic involution on the cusps.

Equivalence of families of singular schemes on threefolds and on ruled fourfolds.

Flaminio Flamini (2004)

Collectanea Mathematica

The main purpose of this paper is twofold. We first analyze in detail the meaningful geometric aspect of the method introduced in [12], concerning families of irreducible, nodal curves on a smooth, projective threefold X. This analysis gives some geometric interpretations not investigated in [12] and highlights several interesting connections with families of other singular geometric objects related to X and to other varieties. Then we use this method to study analogous problems for families of...

Equivalences between elliptic curves and real quadratic congruence function fields

Andreas Stein (1997)

Journal de théorie des nombres de Bordeaux

In 1994, the well-known Diffie-Hellman key exchange protocol was for the first time implemented in a non-group based setting. Here, the underlying key space was the set of reduced principal ideals of a real quadratic number field. This set does not possess a group structure, but instead exhibits a so-called infrastructure. More recently, the scheme was extended to real quadratic congruence function fields, whose set of reduced principal ideals has a similar infrastructure. As always, the security...

Essential dimension of moduli of curves and other algebraic stacks

Patrick Brosnan, Zinovy Reichstein, Angelo Vistoli (2011)

Journal of the European Mathematical Society

In this paper we consider questions of the following type. Let k be a base field and K / k be a field extension. Given a geometric object X over a field K (e.g. a smooth curve of genus g ), what is the least transcendence degree of a field of definition of X over the base field k ? In other words, how many independent parameters are needed to define X ? To study these questions we introduce a notion of essential dimension for an algebraic stack. Using the resulting theory, we give a complete answer to...

Currently displaying 41 – 60 of 88