Real commutative algebra (II). Plane curves.
The space S of all non-trivial real places on a real function field K|k of trascendence degree one, endowed with a natural topology analogous to that of Dedekind and Weber's Riemann surface, is shown to be a one-dimensional k-analytic manifold, which is homeomorphic with every bounded non-singular real affine model of K|k. The ground field k is an arbitrary ordered, real-closed Cantor field (definition below). The function field K|k is thereby represented as a field of real mappings of S which might...
Given a closed Riemann surface R of genus p ≥ 2 together with an anticonformal involution τ : R ---> R with fixed points, we consider the group K(R, τ) consisting of the conformal and anticonformal automorphisms of R which commute with τ...
In this article, we survey recent work on the construction and geometry of representations of a quiver in the category of coherent sheaves on a projective algebraic manifold. We will also prove new results in the case of the quiver • ← • → •.
We study some geometric configurations related to projections of an irreducible algebraic curve embedded in onto embedded projective planes. These configurations are motivated by applications to static and dynamic computational vision. More precisely, we study how an irreducible closed algebraic curve embedded in , of degree and genus , can be recovered using its projections from points onto embedded projective planes. The embeddings are unknown. The only input is the defining equation of...