Displaying 821 – 840 of 2340

Showing per page

Infinite rank of elliptic curves over a b

Bo-Hae Im, Michael Larsen (2013)

Acta Arithmetica

If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then E ( a b ) has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then E ( K a b ) has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over K a b .

Injective endomorphisms of algebraic and analytic sets

Sławomir Cynk, Kamil Rusek (1991)

Annales Polonici Mathematici

We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.

Integrable systems and moduli spaces of rank two vector bundles on a non-hyperelliptic genus 3 curve

Pol Vanhaecke (2005)

Annales de l’institut Fourier

We use the methods that were developed by Adler and van Moerbeke to determine explicit equations for a certain moduli space, that was studied by Narasimhan and Ramanan. Stated briefly it is, for a fixed non-hyperelliptic Riemann surface Γ of genus 3 , the moduli space of semi-stable rank two bundles with trivial determinant on Γ . They showed that it can be realized as a projective variety, more precisely as a quartic hypersurface of 7 , whose singular locus is the Kummer variety of Γ . We first construct...

Currently displaying 821 – 840 of 2340