Displaying 1141 – 1160 of 2340

Showing per page

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

On p-hyperellipticity of doubly symmetric Riemann surfaces.

Ewa Kozlowska-Walania (2007)

Publicacions Matemàtiques

Studying commuting symmetries of p-hyperelliptic Riemann surfaces, Bujalance and Costa found in [3] upper bounds for the degree of hyperellipticity of the product of commuting (M - q)- and (M - q')-symmetries, depending on their separabilities. Here, we find necessary and sufficient conditions for an integer p to be the degree of hyperellipticity of the product of two such symmetries, taking into account their separabilities. We also give some results concerning the existence and uniqueness of symmetries...

Currently displaying 1141 – 1160 of 2340