On Monomial curves and Cohen-Macaulay type.
We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2r - 3(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2r - 1. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.
Studying commuting symmetries of p-hyperelliptic Riemann surfaces, Bujalance and Costa found in [3] upper bounds for the degree of hyperellipticity of the product of commuting (M - q)- and (M - q')-symmetries, depending on their separabilities. Here, we find necessary and sufficient conditions for an integer p to be the degree of hyperellipticity of the product of two such symmetries, taking into account their separabilities. We also give some results concerning the existence and uniqueness of symmetries...