Une démonstration du théorème de Riemann-Roch
Soit une courbe elliptique avec multiplication complexe, définie sur un corps de nombres . Soit un nombre premier. En ajoutant certains points de -torsion de à , on construit une -extension de . On associe à un groupe de Selmer.Pour une -extension galoisienne de , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve de ce résultat dans l’esprit...
Nous exprimons la multiplicité d’intersection de deux courbes se coupant au point singulier d’une surface normale en termes de valuations. C’est une généralisation du résultat connu pour les surfaces régulières.
Nous étudions les extensions abéliennes d’un corps quadratique imaginaire et discutons les analogues des théorèmes de Mazur et Wiles.