On special values for pencils of plane curve singularities.
We study the arithmetic properties of hyperelliptic curves given by the affine equation by exploiting the structure of the automorphism groups. We show that these curves satisfy Lang’s conjecture about the covering radius (for some special covering maps).
Let C be a smooth curve of genus g. For each positive integer r the birational r-gonality sr(C) of C is the minimal integer t such that there is L ∈ Pict(C) with h0(C,L) = r + 1. Fix an integer r ≥ 3. In this paper we prove the existence of an integer gr such that for every integer g ≥ gr there is a smooth curve C of genus g with sr+1(C)/(r + 1) > sr(C)/r, i.e. in the sequence of all birational gonalities of C at least one of the slope inequalities fails