Groupes de Galois de corps de type fini
Il y a quelques années, Florian Pop a démontré que tout corps de type fini sur le corps premier est déterminé à isomorphisme près par son groupe de Galois absolu (quitte à passer à une extension purement inséparable en caractéristique positive). Ce théorème, dont la généalogie remonte à des travaux de Neukirch sur les groupes de Galois de corps de nombres au début des années 1970, répond positivement à la “conjecture anabélienne birationnelle”de A. Grothendieck formulée en 1983. Dans un travail...