Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 14-XX Algebraic geometry
  • 14Jxx Surfaces and higher-dimensional varieties
  • 14J25 Special surfaces

14Jxx Surfaces and higher-dimensional varieties

  • 14J10 Families, moduli, classification: algebraic theory
  • 14J15 Moduli, classification: analytic theory; relations with modular forms
  • 14J17 Singularities
  • 14J20 Arithmetic ground fields
  • 14J25 Special surfaces
  • 14J26 Rational and ruled surfaces
  • 14J27 Elliptic surfaces
  • 14J28 K 3 surfaces and Enriques surfaces
  • 14J29 Surfaces of general type
  • 14J30 3 -folds
  • 14J32 Calabi-Yau manifolds
  • 14J33 Mirror symmetry
  • 14J35 4 -folds
  • 14J40 n -folds ( n > 4 )
  • 14J45 Fano varieties
  • 14J50 Automorphisms of surfaces and higher-dimensional varieties
  • 14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
  • 14J70 Hypersurfaces
  • 14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
  • 14J81 Relationships with physics
  • 14J99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 3 of 3

Showing per page

Babbage's Conjecture, Contact of Surfaces, Symmetric Determinantal Varieties and Applications.

F. Catanese (1981)

Inventiones mathematicae

Berechnung der Homologiegruppen singularitätenfreier algebraischer Hyperflächen und Konstruktion von Repräsentanten ihrer Erzeugenden

G. SCHIEMANN (1980)

Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry

Bounds on the number of non-rational subfields of a function field.

E. Kani (1986)

Inventiones mathematicae

Currently displaying 1 – 3 of 3

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7